Syntaxin 1A Interacts with Multiple Exocytic Proteins to Regulate Neurotransmitter Release In Vivo
نویسندگان
چکیده
Biochemical studies suggest that syntaxin 1A participates in multiple protein-protein interactions in the synaptic terminal, but the in vivo significance of these interactions is poorly understood. We used a targeted mutagenesis approach to eliminate specific syntaxin binding interactions and demonstrate that Drosophila syntaxin 1A plays multiple regulatory roles in neurotransmission in vivo. Syntaxin mutations that eliminate ROP/Munc-18 binding display increased neurotransmitter release, suggesting that ROP inhibits neurosecretion through its interaction with syntaxin. Syntaxin mutations that block Ca2+ channel binding also cause an increase in neurotransmitter release, suggesting that syntaxin normally functions in inhibiting Ca2+ channel opening. Additionally, we identify and characterize a syntaxin Ca2+ effector domain, which may spatially organize the Ca2+ channel, cysteine string protein, and synaptotagmin for effective excitation-secretion coupling in the presynaptic terminal.
منابع مشابه
Bidirectional modulation of transmitter release by calcium channel/syntaxin interactions in vivo.
Protein interactions within the active zone of the nerve terminal are critical for regulation of transmitter release. The SNARE protein syntaxin 1A, primarily known for important interactions that control vesicle fusion, also interacts with presynaptic voltage-gated calcium channels. Based on recordings of calcium channel function in vitro, it has been hypothesized that syntaxin 1A-calcium chan...
متن کاملROP, the Drosophila Sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner.
The Sec1 family of proteins is thought to function in both non-neuronal and neuronal secretion, although the precise role of this protein family has not been defined. Here, we study the function of ROP, the Drosophila Sec1 homolog, in neurotransmitter release. Electrophysiological analyses of transgenic lines overexpressing ROP and syntaxin, a presynaptic membrane protein, indicate that ROP int...
متن کاملNitric Oxide Modulates Synaptic Vesicle Docking/Fusion Reactions
Nitric oxide (NO) stimulates calcium-independent neurotransmitter release from synaptosomes. NO-stimulated release was found to be inhibited by Botulinum neurotoxins that inactivate the core complex of synaptic proteins involved in the docking and fusion of synaptic vesicles. In experiments using recombinant proteins, NO donors increased formation of the VAMP/SNAP-25/syntaxin 1a core complex an...
متن کاملSyntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels.
From its position in presynaptic nerve terminals, the large conductance Ca(2+)-activated K+ channel, Slo, regulates neurotransmitter release. Several other ion channels known to control neurotransmitter release have been implicated in physical interactions with the neurotransmitter release machinery. For example, the Ca(v)2.2 (N-type) Ca2+ channel binds to and is modulated by syntaxin-1A and SN...
متن کاملDual roles of Munc18-1 rely on distinct binding modes of the central cavity with Stx1A and SNARE complex
Sec1/Munc18 proteins play a fundamental role in multiple steps of intracellular membrane trafficking. Dual functions have been attributed to Munc18-1: it can act as a chaperone when it interacts with monomeric syntaxin 1A, and it can activate soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) for membrane fusion when it binds to SNARE complexes. Although both modes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neuron
دوره 23 شماره
صفحات -
تاریخ انتشار 1999